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1. Overview

This paper will describe an algorithm for counting primes 

in roughly n
2
3 log n time and n

1
3 log n space based on 

Linnik's identity.

The identity of Linnik[1] which we are interested in states, 
for our purposes,

∑
k=1

⌊ log2(n )⌋
−1k + 1

k
d k ' (n)=

1
a

if n= pa ,0 otherwise

(1.1)

where p is a prime number and d k ' (n) is the strict count of
divisors function such that

d k ' (n)=∑
j∣n

d 1 ' ( j)d k −1 ' (
n
j
)

d 1 ' (n)={0if n=1
1otherwise

d 0 ' (n)={1if n=1
0otherwise

Note that d k ' (n)=0 when n< 2k  The strict count of 
divisors function is connected to the standard count of 
divisors function by

d k ' (n)=∑
j=0

k

−1k− j(k
j
)d j (n)

(1.2)

where d k  is the standard count of divisors function such 
that

d k (n)=∑
j∣n

d 1( j)d k −1(
n
j
)

and

d 1(n)=1 d 0(n)={1if n=1
0 otherwise

The approach for prime counting here is closely related to 
the method for calculating Mertens function described by 
Deléglise and Rivat in [2].

2. Counting Primes with the Strict Count of
Divisors Summatory Functions 

We begin by defining the strict count of divisors 
summatory function for d k ' (n) :

Dk ' (n )=∑
j=2

n

d k ' ( j )

(2.1)

Summing Linnik's identity, (1.1), from 1 to n then gives the
following identity

∑
k=1

⌊ log2(n )⌋
−1k + 1

k
Dk ' (n)=Π(n)

(2.2)

where the right hand side is the prime power counting 
function.

If we rely on standard techniques, we can invert the prime 
power counting function like so

π(n)=∑
j=1

1
j
μ( j )Π(n

1
j )

(2.3)

where π(n) is the prime counting function and n  is 
the Möbius function, and we finally arrive at our goal, 
which is the number of primes in terms of the strict count 
of divisors summatory functions.

π(n)=∑
j=1

∑
k =1

−1k+ 1

jk
μ( j )D k ' (n

1
j )

(2.4)

One basic combinatorial property of d k ' (n)  and Dk ' (n)  
we will need is

Dk ' (n)=∑
j=2

⌊n ⌋

Dk −1 ' (
n
j
)

D1 ' (n)=⌊n ⌋−1
(2.5)

3. The Core Strict Number of Divisors 
Summatory Identity
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The identity we will use to compute the summed version of
Linnik's identity is this

Dk ' (n)=

              ∑
j=a+ 1

n

D k−1 ' (
n
j
)

              + ∑
j=2

a

d k −1 ' ( j) D1 ' (n
j
)

              + ∑
j=2

a

∑
s=⌊

a
j
⌋+ 1

⌊
n
j
⌋

∑
m=1

k−2

d m ' ( j) Dk−m−1 ' (
n
js

)

(3.1)

for 2≤a≤n . The derivation of this will follow shortly.

We are going to be working with 3 core computational 
rules for the sake of efficiency in our final algorithm.  First,

D1 ' (n)=n−1 and so can be computed in constant time 
and memory.  Second, d 1 ' (n)=1 and can also be 
computed in constant time and memory.  Third, we will 
assume that our sieving process will let us look up

d k ' ( j )where j< a and Dk ' (
n
j
)  where j≥a in 

constant time.  Thus, the key to this identity is 
transforming Dk ' (n) into a form that only uses values 
of d 1 ' (n) , D1 ' (n) , d k ' ( j)  where j< a , , and

Dk ' (
n
j
)  where j≥a .  The right hand side of (3.1) 

usefully does exactly this.

To show why (3.1) works, we need to start with a simpler 
identity.

Establishing the simpler identity

First, we need to show the following

∑
j=2

a

d m ' ( j )Dk ' (n
j
)=

     ∑
j=2

a

dm+ 1 ' ( j)D k−1 ' (
n
j
)   + ∑

j=2

a

∑
s=a

j
+ 1

j

d m ' ( j)D k−1 ' (
n
js

)

(3.2)

where 2≤a≤n .

We begin with the left hand side of  (3.2),

 F (n)=∑
j=2

a

d m ' ( j )D k ' ( n
j
)

(3.3)

One basic property of Dk ' (n) is

D k ' (n)=∑
j=2

⌊n⌋

Dk −1 ' (
n
j
)

and so we can rewrite (3.3) as

F (n)=∑
j=2

a

∑
s=2

⌊
n
j
⌋

d m ' ( j)Dk −1 ' ( n
js

)

We can separate the inner sum into two pieces, giving us

F (n)=∑
j=2

a

∑
s=2

⌊
a
j
⌋

d m ' ( j)Dk −1 ' ( n
js

)+ ∑
j=2

a

∑
s=

a
j
+ 1

n
j

d m ' ( j )D k−1 ' ( n
js

)

(3.4)

Now, another basic combinatorial property of d k ' (n) is

∑
j=2

a

∑
s=2

⌊
a
j
⌋

dm ' ( j) f (
n
js

)=∑
j=2

a

d m+ 1 ' ( j) f (
n
j
)

(3.5)

Looking at (3.4), we should be able to see that our first 
double sum exhibits the pattern in (3.5).  So, we can 
replace it like so

F (n)=∑
j=2

a

d m+ 1 ' ( j )Dk −1 ' (n
j
) + ∑

j=2

a

∑
s=⌊

a
j
⌋+ 1

⌊
n
j
⌋

d m ' ( j)D k−1 ' ( n
js

)

thus establishing our identity from (3.2)

∑
j=2

a

d m ' ( j )Dk ' (n
j
)=

     ∑
j=2

a

dm+ 1 ' ( j )D k−1 ' (
n
j
)   + ∑

j=2

a

∑
s=⌊

a
j
⌋+ 1

j

d m ' ( j)D k−1 ' (
n
js

)

Now we have the tool we need to show (3.1).

The Broader Identity

We begin with 
A(n)=Dk (n)

 Our identity from (2.5) lets us express this as 

A(n)=∑
j=2

n

Dk −1 ' (n
j
)

We can obvious split this sum into the following two 
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pieces

A(n)=∑
j=2

a

Dk −1 ' (n
j
)+ ∑

j=a+ 1

n

D k−1 ' ( n
j
)

Based on our core three computational rules, we can look 
up each of the Dk ' (n) values in the second sum in 
constant time, and so we are left with

Ar1(n)=∑
j=2

a

D k−1 ' ( n
j
)

Because d 1 ' (n)=1 , we can rewrite this as 

Ar1(n)=∑
j=2

a

d 1 ' ( j) Dk−1 ' ( n
j
)

The identity is now in the form that (3.2) expects, and so 
this sum must equal

Ar1(n)=∑
j=2

a

d 2 ' ( j) Dk −2 ' ( n
j
)+∑

j=2

a

∑
s=⌊

a
j
⌋+ 1

j

d1 ' ( j) Dk−2 ' ( n
js

)

The double sum here satisfies our core computational 
rules, and so we can look up all of those values of

d k ' (n) and Dk ' (n) in constant time and never think
of them again.  Not so with the single sum.  So, we are left 
with computing

Ar2 (n)=∑
j=2

a

d 2 ' ( j)Dk −2 ' ( n
j
)

This sum is in a form that can work with (3.2), however.  
So, we can repeat the process again, yielding

Ar2 (n)=∑
j=2

a

d 3 ' ( j) Dk −3 ' (n
j
)+ ∑

j=2

a

∑
s=⌊

a
j
⌋+ 1

j

d 2 ' ( j) Dk−3 ' ( n
js

)

Once again, we can look up the values in the double sum, 
and we're left with a single sum we can apply (3.2) to.

If we repeat this process k-1 times, we are left with

Ark −1(n)=∑
j=2

a

d k −1 ' ( j) D1 ' ( n
j
)

Our three rules of computation say both of the terms inside
the sum can be evaluated in constant time.  And so we are 
done.  If we go back through this process and collect all 
terms that were actually calculated along the way, we will 
find that we have (3.1).

4. Using the Core Number of Divisors
Summatory Identity to Count Primes

If we take (3.1), and we combine it with our summed 
version of Linnik's identity,

∑
k=1

⌊ log2(n )⌋
−1k + 1

k
Dk ' (n)=Π(n)

and keep in mind that 

D1 ' (n)=⌊n⌋−1

then, as a first pass, we can compute the prime power 
counting function with

Π(n)=     n−1+                                                             

              ∑
j=a+ 1

n

∑
k =2

⌊ log2 n⌋
−1k + 1

k
Dk −1 ' (

n
j
)

              + ∑
j=2

a

∑
k =2

⌊ log2 n⌋
−1k + 1

k
d k−1 ' ( j)D1 ' (n

j
)

              + ∑
j=2

a

∑
s=⌊

a
j
⌋+ 1

⌊
n
j
⌋

∑
k =2

⌊ log2 n⌋
−1k+ 1

k ∑
m=1

k −2

d m ' ( j )D k−m−1 ' (
n
js

)

(4.2)

There are two subsequent steps required for turning this 
equation into its final form for our purposes.

First, for any sum of the form                                               

∑
j=2

n

f ⌊
n
j
⌋

only has 2 n
1
2 terms we are concerned with and can be split 

into

∑
j=2

⌊n
1
2
⌋

f (⌊
n
j
⌋)+ ∑

j=1

⌊
n

⌊n
1
2
⌋

−1 ⌋

(⌊
n
j
⌋−⌊

n
j+ 1

⌋) f ( j )

(4.3)

We also have to choose a suitable value for a. For this 

paper, a will be n
1
3 , so we will need to calculate d ' n  up
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to n
1
3 and D' n  up to n

2
3 .  That task will be covered in 

the next section.  Our final identity for the prime power 
counting function is thus

Π(n)=    n−1+                                                                                      

              ∑
j=⌊n

1
3⌋+ 1

⌊n
1
2
⌋

∑
k=2

⌊ log2n ⌋
−1k + 1

k
Dk −1 ' (

n
j
)

              ∑
j=1

⌊n
1
2
⌋

(⌊
n
j
⌋−⌊

n
j+ 1

⌋) ∑
k=2

⌊ log2n ⌋
−1k + 1

k
Dk −1 ' ( j)

              + ∑
j=2

⌊n
1
3⌋

∑
k =2

⌊ log2 n⌋
−1k + 1

k
d k−1 ' ( j)D1 ' (

n
j
)

              + ∑
j=2

⌊n
1
3
⌋

∑
s=⌊

⌊n
1
3⌋

j
⌋+ 1

⌊
n
j
⌋

∑
k =2

⌊ log2 n⌋
−1k + 1

k ∑
m=1

k−2

d m ' ( j )D k−m−1 ' ( n
js

)

              + ∑
j=2

⌊n
1
3⌋

∑
s=1

⌊
n
j
⌋

1
2−1

(⌊
n
js

⌋−⌊
n

j (s+ 1)
⌋)⋅

∑
k=2

⌊ log2n ⌋
−1k+ 1

k ∑
m=1

k −2

d m ' ( j)Dk −m−1 ' (s)

         (4.4)

Obviously calculating d ' n  up to n
1
3

can be done 
relatively quickly.   Thus, if you can calculate D' n  up to

n
2
3 in roughly O n

2
3  time, the above equation can be 

computed in something like O(n
2
3 log n) steps because of 

the final two lines in the equation (in actual practice, with 
some slight term rearrangement in the two small inner 
sums and sensible memoization,  they can be flattened to a 
log n-sized sum).

5. Calculating Dk ' n Up to n
2
3

To compute Dk ' n up to n
2
3 in roughly O (n

2
3 log n) time

and O (n
1
3 log n) space, we will turn to sieving.  First, we 

compute primes up to n
1
3  - the largest primes needed to 

sieve numbers ≤ n
2
3 .  We then sieve in blocks of size n

1
3 ,

establishing our memory boundary.  This process is 

repeated n
1
3 times.  We sieve in such a way that we have 

the full prime factorization of all entries in each block, 
with each entry in this form:

n= p1
a 1 p 2

a2 ... p k
a k

We will need the power signature of each entry.

The number of divisors function, given the above power 
signature, is

d k (n)=(a1+ k −1
a1

)⋅(a2+ k−1
a2

)⋅(a 3+ k −1
a3

)⋅...

(5.1)

This gives us the strict number of divisor functions by

d k ' (n)=∑
j=0

k

−1k − j (k
j
)d j(n )

(5.2)

So, we use our sieve information to calculate the strict 
number of divisor function for each entry in the sieve.  
Since

Dk ' (n)=Dk ' (n−1)+ d k ' (n)

we can then calculate all values of Dk ' (n) in each block.  
We will have to store off the final values of the Dk ' n

functions at the end of each block to use as the starting 
values for the next block.

As mentioned, this process runs in something like

O (n
2
3 log n) time.

6. Conclusion for this Algorithm

The trick to implementing this algorithm is to interleave 
the sieving described in section 5 with a gradual 
computation of the sums from (4.4).  Essentially, the sums 
from (4.4) need to be evaluated in order from smallest 
terms of Dk ' n  to greatest, more or less as a queue.  
What this means in practice is that for the first two lines,

∑
j=⌊n

1
3
⌋+ 1

⌊n
1
2
⌋

−
1
2

D1 ' ( n
j
)+

1
3

D2 ' ( n
j
)−

1
4

D 3 ' ( n
j
)+ ...                       

+ ∑
j=1

⌊
n

⌊n
1
2
⌋

−1⌋

(⌊
n
j
⌋−⌊

n
( j+ 1)

⌋)(−
1
2

D1 ' ( j)+ 1
3

D2 ' ( j)− 1
4

D3 ' ( j)+ ...)

the second sum will be evaluated first (again, interleaved 

with the sieving of blocks of Dk ' (n )   n
1
3   in size), and, 

once finished, the first sum will be evaluated with j starting

with the value of n
1
2  and then decreasing until it is

⌊n
1
3 ⌋+ 1 , all interleaved with the sieving.  In the C code, 

you can see this process manually worked through in the 
function calcS1().

A similar process is necessary for the double sums one the 
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last two lines of (4.4).  In the C code, you can see this 
process worked through in the function calcS3().

This algorithm can be sped up by using a wheel, which 
decreases the amount of operations involved in sieving,  
the double sums calculated in (4.4), and potentially a 
constant factor in the memory usage as well.  C source 
code for the algorithm is present in an Appendix, but it 
doesn't implement a wheel and doesn't run as fast as it 
could.

If anything is too unclear in this description, hopefully 
browsing the source code in the Appendix will help.  
Alternatively, the paper in [2] covers many of the same 
ideas and might be a useful reference for another 
description of an extremely similar process.
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Appendix

This is a C implementation of the algorithm described in 
this paper. Owing to precision issues , it actually stops 
returning valid values at relatively low values, say around
1011  , an eminently fixable problem. This code can be 

sped up quite a bit, at least in constant terms, by 
implementing a wheel. There are almost certainly other bits
and pieces of this code (particularly in the functions d1 and
d2) that can be sped up quite a bit as well, in constant 
terms.

#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "conio.h"
#include "time.h"

typedef long long BigInt;

static BigInt mu[] = { 0, 1, -1, -1, 0, -1, 1, -1, 0, 
0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 
0, 1, 0, 0, -1, -1, -1, 
    0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, 
-1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0,
0, 1, -1, -1, 0, 1, -1, 
    -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 0 };

static BigInt* binomials; /* This is 

used as a doubly subscripted array, 128x128.  Indexing
is done manually.*/
static BigInt nToTheThird;
static BigInt logn;

static BigInt numPrimes;
static BigInt* primes;

static BigInt* factorsMultiplied;
static BigInt* totalFactors;
static BigInt* factors; /* This is 
used as a doubly subscripted array, n^1/3 x ln n.  
Indexing is done manually.*/
static BigInt* numPrimeBases;

static BigInt* DPrime; /* This is 
used as a doubly subscripted array, n^1/3 x ln n.  
Indexing is done manually.*/

static BigInt curBlockBase;

static double t;

static BigInt nToTheHalf;
static BigInt numDPowers;
static double* dPrime;

static BigInt S1Val;
static BigInt S1Mode;
static BigInt* S3Vals;
static BigInt* S3Modes;

static bool ended;
static BigInt maxSieveValue;

static BigInt ceilval;

static BigInt n;

BigInt binomial( double n, int k ){
    double t = 1;
    for( int i = 1; i <= k; i++ ){
        t *= ( n - ( k - i ) ) / i;
    }
    return BigInt( t + .1 );
}

static BigInt invpow(double n, double k) {
    return (BigInt)(pow(n, 1.0 / k) + .00000001);
}

/* See 
http://www.icecreambreakfast.com/primecount/primecount
ing.html#ch5 for a description of
calculating d_k'(n) from a complete factorization of a
number n.*/
static BigInt d1(BigInt* a, BigInt o, BigInt k, BigInt
l){
    BigInt t = 1;
    for (BigInt j = 0; j < l; j++) t *= 
binomials[(a[o*logn+ j] - 1 + k)*128 + a[o*logn+ j]];
    return t;
}

/* See 
http://www.icecreambreakfast.com/primecount/primecount
ing.html#ch5 for a description of
calculating d_k'(n) from a complete factorization of a
number n.*/
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static BigInt d2(BigInt* a, BigInt o, BigInt k, BigInt
l, BigInt numfacts ){
    if (numfacts < k) return 0;
    BigInt t = 0;
    for (BigInt j = 1; j <= k; j++) t += ( ( k - j ) %
2 == 1 ? -1:1 ) * binomials[k * 128 + j] * d1(a, o, j,
l);
    if( t < 0 ){
        int asdf  = 9;
    }
    return (BigInt)t;
}

static void allocPools( BigInt n ){
    nToTheThird = (BigInt)pow(n, 1.0 / 3);

    logn = (BigInt)(log(pow(n, 2.00001 / 3)) / 
log(2.0)) + 1;
    factorsMultiplied = new BigInt[nToTheThird];
    totalFactors = new BigInt[nToTheThird];
    factors = new BigInt[nToTheThird * logn];
    numPrimeBases = new BigInt[nToTheThird];
    DPrime = new BigInt[(nToTheThird + 1) * logn];
    binomials = new BigInt[128*128+ 128];
    for (BigInt j = 0; j < 128; j++) for (BigInt k = 
0; k <= j; k++)binomials[j * 128 + k] = binomial(j, 
k);
    for (BigInt j = 0; j < logn; j++) DPrime[j] = 0;
    curBlockBase = 0;

    t = n - 1;

    nToTheHalf = (BigInt)pow(n, 1.0 / 2);
    numDPowers = (BigInt)(log(pow(n, 2.00001 / 3)) / 
log(2.0)) + 1;
    dPrime = new double[(nToTheThird + 1) * 
(numDPowers + 1)];

    S1Val = 1;
    S1Mode = 0;
    S3Vals = new BigInt[nToTheThird + 1];
    S3Modes = new BigInt[nToTheThird + 1];

    ended = false;
    maxSieveValue = (BigInt)(pow(n, 2.00001 / 3));

    for (BigInt j = 2; j < nToTheThird + 1; j++){
        S3Modes[j] = 0;
        S3Vals[j] = 1;
    }
}

static void deallocPools(){
    delete factorsMultiplied;
    delete totalFactors;
    delete factors;
    delete numPrimeBases;
    delete DPrime;
    delete binomials;
    delete dPrime;
    delete S3Vals;
    delete S3Modes;
    delete primes;
}

/* This finds all the primes less than n^1/3, which 
will be used for sieving and generating complete 
factorizations of numbers up to n^2/3*/
static void fillPrimes(){

    BigInt* primesieve = new BigInt[nToTheThird + 1];
    primes = new BigInt[nToTheThird + 1];
    numPrimes = 0;
    for (BigInt j = 0; j <= nToTheThird; j++) 
primesieve[j] = 1;
    for (BigInt k = 2; k <= nToTheThird; k++){
        BigInt cur = k;
        if (primesieve[k] == 1){
            primes[numPrimes] = k;
            numPrimes++;
            while (cur <= nToTheThird){
                primesieve[cur] = 0;
                cur += k;
            }
        }
    }
    delete primesieve;
}

/* This resets some state used for the sieving and 
factoring process.*/
static void clearPools(){
    for (BigInt j = 0; j < nToTheThird; j++){
        numPrimeBases[j] = -1;
        factorsMultiplied[j] = 1;
        totalFactors[j] = 0;
    }
}

/* We can use sieving on our current n^1/3 sized block
of numbers to
get their complete prime factorization signatures, 
with which we can then
quickly compute d_k' values.*/
static void factorRange(){
    for (BigInt j = 0; j < numPrimes; j++){
        // mark everything divided by each prime, 
adding a new entry.
        BigInt curPrime = primes[j];
        if (curPrime * curPrime > curBlockBase + 
nToTheThird) break;
        BigInt curEntry = ( curBlockBase % curPrime ==
0 ) ? 0:curPrime - (curBlockBase % curPrime);
        while (curEntry < nToTheThird){
            if( curEntry+curBlockBase != 0 ){
                factorsMultiplied[curEntry] *= 
curPrime;
                totalFactors[curEntry]++;
                numPrimeBases[curEntry]++;
                factors[curEntry*logn+ 
numPrimeBases[curEntry]] = 1;
            }
            curEntry += curPrime;
        }
        // mark everything divided by each prime power
        BigInt cap = (BigInt)( log((double)
(nToTheThird+curBlockBase)) / log((double)curPrime) + 
1 );
        BigInt curbase = curPrime;
        for (BigInt k = 2; k < cap; k++){
            curPrime *= curbase;
            curEntry = (curBlockBase % curPrime == 
0) ? 0 : curPrime - (curBlockBase % curPrime);
            while (curEntry < nToTheThird){
                factorsMultiplied[curEntry] *= 
curbase;
                totalFactors[curEntry]++;
                if (curEntry + curBlockBase != 
0)factors[curEntry*logn+ numPrimeBases[curEntry]] = k;
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                curEntry += curPrime;
            }
        }
    }
    // account for prime factors > n^1/3
    for (BigInt j = 0; j < nToTheThird; j++){
        if (factorsMultiplied[j] < j+curBlockBase){
            numPrimeBases[j]++;
            totalFactors[j]++;
            factors[j*logn+ numPrimeBases[j]] = 1;
        }
    }
}

/* By this point, we have already factored, through 
sieving, all the numbers in the current n^1/3 sized 
block we are looking at.
With a complete factorization, we can calculate 
d_k'(n) for a number.
Then, D_k'(n) = d_k'(n) + D_k'(n-1).*/
static void buildDivisorSums(){
    for (BigInt j = 1; j < nToTheThird+1; j++){
        if (j + curBlockBase == 1 || j + curBlockBase 
== 2) continue;
        for (BigInt k = 0; k < logn; k++){
            DPrime[j * logn + k] = DPrime[(j - 1) * 
logn + k] + d2(factors, j - 1, k, numPrimeBases[j - 1]
+ 1, totalFactors[j - 1]);
        }
    }
    for (BigInt j = 0; j < logn; j++) DPrime[j] = 
DPrime[nToTheThird*logn+ j];
}

/* This general algorithm relies on values of D_k' <= 
n^2/3 and d_k' <= n^1/3.  This function calculates 
those values of d_k'.*/
static void find_dVals(){
    curBlockBase = 1;
    clearPools();
    factorRange();
    buildDivisorSums();

    for (BigInt j = 2; j <= nToTheThird; j++){
        for (BigInt m = 1; m < numDPowers; m++){
            double s = 0;
            for (BigInt r = 1; r < numDPowers; r++) s 
+= pow(-1.0, (double)( r + m )) * (1.0 / (r + m + 1)) 
* (DPrime[j * logn + r] - DPrime[(j - 1) * logn + r]);
            dPrime[j*(numDPowers + 1)+ m] = s;
        }
    }
}

static void resetDPrimeVals(){
    curBlockBase = 0;
    for (BigInt k = 0; k < nToTheThird + 1; k++)
        for (BigInt j = 0; j < logn; j++)
            DPrime[k * logn + j] = 0;
}

/* This function is calculating the first two sums of 
http://www.icecreambreakfast.com/primecount/primecount
ing.html#4_4
It is written to rely on values of D_k' from smallest 
to greatest, to use the segmented sieve.*/
static void calcS1(){
    if (S1Mode == 0){
        while (S1Val <= ceilval){

            BigInt cnt = (n / S1Val - n / (S1Val + 
1));
            for (BigInt m = 1; m < numDPowers; m++) t 
+= cnt * (m % 2 == 1 ? -1 : 1) * (1.0 / (m + 1)) * 
DPrime[(S1Val - curBlockBase + 1) * logn + m];
            S1Val++;
            if (S1Val >= n / nToTheHalf){
                S1Mode = 1;
                S1Val = nToTheHalf;
                break;
            }
        }
    }
    if (S1Mode == 1){
        while (n / S1Val <= ceilval){
            for (BigInt m = 1; m < numDPowers; m++) t 
+= (m % 2 == 1 ? -1 : 1) * (1.0 / (m + 1)) * DPrime[(n
/ S1Val - curBlockBase + 1) * logn + m];
            S1Val--;
            if (S1Val < nToTheThird + 1){
                S1Mode = 2;
                break;
            }
        }
    }
}

/* This loop is calculating the 3rd term that runs 
from 2 to n^1/3 in 
http://www.icecreambreakfast.com/primecount/primecount
ing.html#4_4*/
static void calcS2(){
    for (BigInt j = 2; j <= nToTheThird; j++)
        for (BigInt k = 1; k < numDPowers; k++)
            t += (n / j - 1) * pow(-1.0, (double)k) * 
(1.0 / (k + 1)) * (DPrime[j * logn + k] - DPrime[(j - 
1) * logn + k]);
}

/* This loop is calculating the two double sums in 
http://www.icecreambreakfast.com/primecount/primecount
ing.html#4_4
It is written to rely on values of D_k' from smallest 
to greatest, to use the segmented sieve.*/
static void calcS3(){
    for (BigInt j = 2; j <= nToTheThird; j++){
        if (S3Modes[j] == 0){
            BigInt endsq = (BigInt)(pow(n / j, .5));
            BigInt endVal = (n / j) / endsq;
            while (S3Vals[j] <= ceilval){
                BigInt cnt = (n / (j * S3Vals[j]) - 
n / (j * (S3Vals[j] + 1)));
                for (BigInt m = 1; m < numDPowers; m+
+) t += cnt * DPrime[(S3Vals[j] - curBlockBase + 1) * 
logn + m] * dPrime[j*(numDPowers + 1)+ m];
                S3Vals[j]++;
                if (S3Vals[j] >= endVal){
                    S3Modes[j] = 1;
                    S3Vals[j] = endsq;
                    break;
                }
            }
        }
        if (S3Modes[j] == 1){
            while (n / (j * S3Vals[j]) <= ceilval){
                for (BigInt m = 1; m < numDPowers; m+
+) t += DPrime[(n / (j * S3Vals[j]) - curBlockBase + 
1) * logn + m] * dPrime[j * (numDPowers + 1) + m];
                S3Vals[j]--;
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                if (S3Vals[j] < nToTheThird / j + 1){
                    S3Modes[j] = 2;
                    break;
                }
            }
        }
    }
}

/* This is the most important function here. How 
it works:
*  first we allocate our n^1/3 ln n sized pools 
and other variables.
*  Then we go ahead and sieve to get our primes 
up to n^1/3
*  We also calculate, through one pass of 
sieving, values of d_k'(n) up to n^1/3
*  Then we go ahead and calculate the loop S2 
(check the description of the algorithm), which only 
requires
*  values of d_k'(n) up to n^1/3, which we 
already have.
*  Now we're ready for the main loop.
*  We do the following roughly n^1/3 times.
*  First we clear our sieving variables.
*  Then we factor, entirely, all of the numbers 
in the current block sized n^1/3 that we're looking 
at.
*  Using our factorization information, we 
calculate the values for d_k'(n) for the entire range 
we're looking,
*  and then sum those together to have a rolling
set of D_k'(n) values
*  Now we have values for D_k'(n) for this block
sized n^1/3
*  First we see if any of the values of S1 that 
we need to compute are in this block. We can do this 
by
*  (see the paper) walking through the two S1 
loops backwards, which will use the D_k'(n)
*  values in order from smallest to greatest
*  We then do the same thing will all of the S3 
values
*  Once we have completed this loop, we will 
have calculated the prime power function for n.
*
* This loop is essentially calculating
*

http://www.icecreambreakfast.com/primecount/primecount
ing.html#4_4
*/

static double calcPrimePowerCount(BigInt nVal){
    n = nVal;
    allocPools(n);
    fillPrimes();
    find_dVals();
    calcS2();
    resetDPrimeVals();

    for (curBlockBase = 0; curBlockBase <= 
maxSieveValue; curBlockBase += nToTheThird ){
        clearPools();
        factorRange();

        buildDivisorSums();

        ceilval = curBlockBase + nToTheThird - 1;
        if (ceilval > maxSieveValue) {
            ceilval = maxSieveValue;
            ended = true;
        }

        calcS1();
        calcS3();
        if (ended) break;
    }

    deallocPools();

    return t;
}

static BigInt countprimes(BigInt num) {
    double total = 0.0;
    for (BigInt i = 1; i < log((double)num) / 
log(2.0); i++) {
        double val = calcPrimePowerCount( invpow(num, 
i)) / (double)i * mu[i];
        total += val;
    }
    return total+.1;
}

int scaleNum = 10;
int main(int argc, char* argv[]){
    int oldClock = (int)clock();
    int lastDif = 0;

    printf( "                                         
Time\n");
    printf( "                                         
Increase\n");
    printf( "                                         
for x%d\n", scaleNum);
    printf( "         __ Input Number __   __ Output 
Number __ _ MSec _ _ Sec _  Input\n");
    printf( "                                         
\n");
    for( BigInt i = scaleNum; i <= 
1000000000000000000; i *= scaleNum ){
        printf( "%17I64d(10^%4.1f): ", i, 
log( (double)i )/log(10.0) );
        BigInt total = (BigInt)(countprimes( i )
+.00001);
        int newClock = (int)clock();
        printf( " %20I64d %8d : %4d: x%f\n",
            total, newClock - oldClock, ( newClock - 
oldClock ) / CLK_TCK,
            ( lastDif ) ? (double)( newClock - 
oldClock ) / (double)lastDif : 0.0 );
        lastDif = newClock - oldClock;
        oldClock = newClock;
    }

    getch();

    return 0;
}


